
Basic research

Corresponding author: 
Dr. Cheng-Ying Hsieh
Department 
of Pharmacology
Taipei Medical University
250 Wu-Hsing St
Taipei 110, Taiwan
Phone: +886-2-27361661, 
ext. 3194
E-mail: hsiehcy@tmu.edu.tw
Dr. Shih Y. Huang
School of Nutrition 
and Health Sciences
Taipei Medical University
250 Wu-Hsing St
Taipei 110, Taiwan
Phone: +886-2-27361661, 
ext. 6543
E-mail: sihuang@tmu.edu.tw

1 Department of Cardiovascular Surgery, Mackay Memorial Hospital, and Mackay 
Medical College, Taipei, Taiwan

2 Department of Pharmacology and Graduate Institute of Medical Sciences, College  
of Medicine, Taipei Medical University, Taipei, Taiwan

3Department of Cardiology, Yuan’s General Hospital, Kaohsiung, Taiwan
4Department of Internal Medicine, Yuan’s General Hospital, Kaohsiung, Taiwan
5 Department of Cardiology, School of Medicine, Taipei Medical University, Taipei, Taiwan
6School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan

Submitted: 30 April 2015
Accepted: 30 June 2015

Arch Med Sci 2018; 14, 3: 579–587
DOI: https://doi.org/10.5114/aoms.2018.75085
Copyright © 2018 Termedia & Banach

Inhibitory effect of PDGF-BB and serum-stimulated 
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by hinokitiol via up-regulation of p21 and p53 
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A b s t r a c t

Introduction: Vascular smooth muscle cell (VSMC) proliferation plays a ma-
jor role in the progression of vascular diseases. In the present study, we 
established the efficacy and the mechanisms of action of hinokitiol, a tropo-
lone derivative found in Chamaecyparis taiwanensis, Cupressaceae, in rela-
tion to platelet-derived growth factor-BB (PDGF-BB) and serum-dependent 
VSMC proliferation. 
Material and methods: Primary cultured rat VSMCs were pre-treated with 
hinokitiol and then stimulated by PDGF-BB (10 ng/ml) or serum (10% fe-
tal bovine serum). Cell proliferation and cytotoxicity were determined us-
ing the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay 
and lactose dehydrogenase assay, respectively. The degree of DNA synthesis 
was evaluated by BrdU-incorporation measurements and observed using 
confocal microscopy. Immunoblotting was utilized to determine the protein 
level of p-extracellular signal-regulated kinase (ERK) 1/2, p-Akt, p-phospho-
inositide 3-kinase (PI3K), p-Janus kinase 2 (JAK2), p-p53, and p21Cip1. The 
promoter activity of p21 and p53 activity were measured by dual luciferase 
reporter assay.  
Results: Treatment with hinokitiol (1–10 µM) inhibited PDGF-BB and serum- 
induced VSMC proliferation and DNA synthesis in a  concentration-depen-
dent manner. Cytotoxicity was not observed in hinokitiol-treated VSMCs 
at the studied concentrations. Pre-incubation of VSMCs with hinokitiol did 
not alter PDGF-BB-induced phosphorylation of ERK1/2, Akt, PI3K or JAK2. 
Interestingly, hinokitiol induced promoter activity of p21 and p21 protein 
expression in VSMCs. Furthermore, hinokitiol augmented p53 protein phos-
phorylation and subsequently led to enhanced p53 activity.  
Conclusions: These data suggest that the anti-proliferative effects of hi-
nokitiol in VSMCs may be mediated by activation of p21 and p53 signaling 
pathways, and it may contribute to the prevention of vascular diseases as-
sociated with VSMC proliferation.
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Introduction

Increased proliferation of vascular smooth mus-
cle cells (VSMCs) is an important phenomenon in 
the pathogenesis of atherosclerosis, which is the 
underlying pathology for many cardiovascular 
diseases such as myocardial infarction or stroke 
[1, 2]. Cell cycle regulation is considered to be 
an essential mechanism for the inhibition of cell 
proliferation [3]. The cell cycle is regulated by the 
synchronized action of cyclin-dependent kinases 
(CDKs), in association with their specific regulato-
ry cyclin proteins. Therefore, functional activation 
of CDK-cyclin is required for cell cycle progression 
[4, 5]. The kinase activity of these CDK-cyclin com-
plexes is inhibited by two classes of cyclin-depen-
dent kinase inhibitors (CKIs), including the INK4 
family (p16INK4a and p15INK4b) and cip family 
(p21cip1 and p27kip1) [6–8]. p53 is known to be 
an up-regulator of p21 in cell cycle arrest. Sever-
al findings have demonstrated that the product 
of p53 is responsible for the G1 checkpoint. In 
response to genotoxic stress and drugs, the lev-
el of p53 protein was increased, and a  transient 
arrest of cell cycle progression in the G1 phase 
occurred [9] or apoptosis was triggered [10, 11]. 
Thus, induction of p53 has been considered to be 
an effective strategy for molecular target therapy 
of atherosclerosis. 

Vascular smooth muscle cell proliferation in-
duced by platelet-derived growth factor (PDGF) 
has been considered to be crucial for the develop-
ment of vascular diseases. The PDGF interacts with 
its receptor in VSMCs. PDGF-BB can activate PLC g,  
Akt, and ERK1/2 signaling pathways to induce cell 
proliferation, cell migration, and angiogenesis of 
VSMCs [12]. A  study has reported that stimulat-
ing p53 activity and inducing the expression of 
p21waf1/cip1 antagonizes the down-regulation of 
the levels and/or activities of these molecules by 
PDGF-BB [13]. Therefore, the identification of nov-
el compounds that inhibit PDGF-dependent cell 
proliferation has the potential to improve existing 
therapeutic strategies and limit late cardiovascu-
lar complications [14]. 

Hinokitiol (Figure 1 A), also known as β-thu-
japlicin, is a natural tropolone-related compound 
found in the heartwood of Cupressaceae plants 
that has a wide range of biochemical and phar-
macological activities [15]. This compound has 
received more attention from several investiga-
tors recently, as it has been used in hair tonics, 
toothpastes, cosmetics, and food as an anti-
microbial agent [16], and several studies have 
confirmed that it has marked anti-bacterial [17], 
anti-tumor [18] and neuroprotective activities 
[19], as well as antioxidant capacities [20]. Re-
cent studies have reported that hinokitiol induc-
es DNA damage and autophagy followed by cell 

cycle arrest in cancer cells [21, 22]. Our previous 
studies have demonstrated that hinokitiol has 
potent in vitro and in vivo antithrombotic [23],  
in vivo neuroprotective [24] and in vitro and  
in vivo antitumor effects [25]. However, little is 
known about the effects of hinokitiol on cardio-
vascular diseases, and the findings of the as-
sociated signaling mechanisms remain unclear. 
Therefore, we investigated whether hinokiti-
ol attenuates VSMC proliferation induced by  
PDGF-BB or serum in vitro.

Material and methods

Materials

Hinokitiol (product number: 469521; purity: ≥ 
98.5%) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyl tetrazolium bromide (MTT) were purchased 
from Sigma Chemical Company (St. Louis, MO, USA). 
Recombinant PDGF-BB was purchased from Pepro-
Tech (Rocky Hill, NJ, USA). Anti-mouse and anti-rab-
bit immunoglobulin G-conjugated horseradish per-
oxidase (HRP) was purchased from GE Healthcare 
(Sunnyvale, CA, USA) and/or Jackson-Immuno Re-
search (West Grove, PA, USA). Anti-phospho-ERK1/2 
(Thr202/Tyr204), anti-phospho-AKT (Ser473), antiphos-
pho-PI3K, and antiphospho-JAK2 monoclonal anti-
bodies (mAbs) were purchased from Cell Signaling 
(Beverly, MA, USA). Anti-p53 was obtained from Ge-
neTex Inc (Irvine, CA). The WWP-luc (p21cip/Waf1 
promoter) construct (Addgene plasmid 16451) and 
the PG13-luc plasmid with p53 binding sites (Ad-
dgene plasmid 16642) were kindly provided by Dr. 
Ming Jen Hsu. The Dual-Glo luciferase assay system 
was purchased from Promega (Madison, WI). The 
Hybond-P polyvinylidene difluoride (PVDF) mem-
brane and enhanced chemiluminescence (ECL) 
Western blotting detection reagent and analysis 
system were obtained from GE Healthcare (Sunny-
vale, CA, USA). All other chemicals used in this 
study were of reagent grade. 

Animal care and cultivation of rat primary 
VSMCs

All animal experiments and care were per-
formed according to the National Research Council 
Guide for the Care and Use of Laboratory Animals, 
and were approved by the Institutional Animal 
Care and Use Committee (IACUC) of Taipei Medi-
cal University. As previously described [26], VSMCs 
were enzymatically isolated from the thoracic aor-
tas of male Wistar rats (250–300 g). VSMCs were 
grown in Dulbecco’s modified Eagle’s medium 
(DMEM) supplemented with 20 mM/l HEPES, 10% 
fetal bovine serum (FBS), 1% penicillin/streptomy-
cin, and 2 mM/l glutamine at 37°C in a humidified 
atmosphere of 5% CO2. VSMCs at passage 4–8 
were used in all experiments.
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MTT assay

VSMCs (2 × 104 cells/well) were seeded on 24-
well plates and cultured in DMEM containing 10% 
FBS for 24 h. The cell was then treated according 
to the experimental designs. The cell number was 
measured using a colorimetric assay based on the 
ability of mitochondria in viable cells to reduce the 
MTT as previously described [27]. The cell number 
index was calculated as the absorbance of treated 
cells/control cells. 

Lactose dehydrogenase (LDH) assay

Cytotoxicity was assessed by LDH assay in the 
supernatant medium using a non-radioactive cyto-
toxicity kit according to the protocol of the manu-
facturer (BioVision Inc, Milpitas, CA, USA). VSMCs 
were seeded on a  round-bottom 96-well culture 
plate in triplicate sets of wells. After incubation, 
cells were treated with various concentrations 
of hinokitiol (1–200 µM) for 24 and 48 h. VSMCs 

were lysed followed by two freeze/thaw cycles. The 
plate was centrifuged at 250 g for 4 min, and 50 µl  
of supernatant was transferred from each well to 
a fresh 96-well flat-bottom plate. Then 50 µl of the 
reconstituted substrate mix was added to each 
well of the plate. The plate was covered with foil 
to protect it from light, and then the plate was in-
cubated at room temperature for 30 min. The reac-
tion was stopped by the addition of 50 µl of stop 
solution, and LDH was determined by measuring 
the absorbance at 490 nm. The fold activity of LDH 
was calculated from the following equation: [(ex-
perimental LDH release)/(vehicle LDH release)].

DNA synthesis assay 

VSMCs (2 × 105 cells/dish) were seeded in a 96-
well microplate for 24 h and then serum-starved 
for 24 h. Following preincubation with hinokitiol for  
20 min, the cells were treated with PDGF-BB  
(10 ng/ml) and 10% FBS serum for 48 h. DNA syn-

Figure 1. Effects of hinokitiol on platelet-derived growth factor (PDGF)-BB and serum-induced proliferation of vas-
cular smooth muscle cells (VSMCs). A – Chemical structure of hinokitiol. B, C – Serum-starved VSMCs were pretreat-
ed in the presence or absence of hinokitiol (1–50 µM), and then stimulated with (B) 10 ng/ml PDGF-BB or (C) 10% 
fetal bovine serum (FBS) for 48 h. Cell proliferation was evaluated by MTT assay. D – VSMCs were co-treated with 
hinokitiol (1–200 µM) for 24 or 48 h, and cytotoxicity was determined using the LDH assay. Data are presented as 
mean ± SEM (n = 3).  *p < 0.05 compared to control group, #p < 0.05 compared to PDGF-BB or FBS stimulated cells
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thesis was assessed using BrdU incorporation as-
say kits (Roche Diagnostics, Rotkreuz, Switzerland) 
according to the manufacturer’s instructions. DNA 
synthesis in VSMCs was assessed by the incorpo-
ration of BrdU. In addition, confocal microscopy 
was also used to observe the expression of BrdU 
positive cells. VSMCs (1 × 105 cells/cover slip) were 
placed on cover slips and allowed to adhere in a cell 
culture incubator overnight. VSMCs were treated 
as experimental design, and fixed with BrdU fixed 
solution (Roche Diagnostics, Rotkreuz, Switzer-
land). After incubation with 3% bovine serum al-
bumin (BSA) in phosphate-buffered saline (PBS) for 
60 min, the preparation was incubated overnight 
with a  primary anti-BrdU Ab (1 : 80). Cells were 
then washed three times with PBS and exposed 
to goat anti-mouse IgG secondary antibody, Alexa 
Fluor 488 conjugate (1 : 1000) (Thermo Fisher Sci-
entific, Waltham, MA, USA) for 2 h. The samples 
were counter-stained with DAPI and mounted with 
mounting buffer (Vector Laboratories, Burlingame, 
CA, USA) under a glass cover slip on a Leica TCS SP5 
Confocal Spectral Microscope Imaging System us-
ing an argon/krypton laser (Mannheim, Germany).

Immunoblotting 

Immunoblotting was performed as previous-
ly described [28]. Serum-starved VSMCs (2 × 105 
cells/dish) were treated with hinokitiol (1–100 µM) 
or DMSO for 20 min, followed by the addition of 
PDGF-BB (10 ng/ml) for the indicated times. After 
treatment, proteins were extracted with lysis buf-
fer. The lysates were centrifuged, the supernatant 
protein (50 µg) was collected and subjected to 
sodium dodecylsulfate polyacrylamide gel electro-
phoresis (SDS-PAGE), and the separated proteins 
were electrophoretically transferred onto 0.45-µm 
polyvinylidene difluoride (PVDF) membranes. The 
blots were blocked with TBST (10 mM Tris-base, 
100 mM NaCl, and 0.01% Tween 20) containing 
5% bovine serum albumin (BSA) for 1 h and were 
then probed with various primary antibodies. 
The membranes were incubated with HRP-linked  
anti-mouse IgG or anti-rabbit IgG (diluted 1 : 3000 
in TBST) for 1 h. Immunoreactive bands were de-
tected by an enhanced chemiluminescence (ECL) 
system. The bar graph depicts the ratios of quanti-
tative results obtained by scanning reactive bands 
and quantifying the optical density using video 
densitometry (Bio-profil; Biolight Windows Appli-
cation V2000.01; Vilber Lourmat, France).

Dual luciferase reporter assay 

Cells were transfected with PG13-luc or p21cip/
Waf1-luc using Turbofect reagent (Upstate Bio-
technology, Lake Placid, NY). Cells with and with-
out treatments were then harvested, and the lu-
ciferase activity was determined using a Dual-Glo 

luciferase assay system kit (Promega, Madison, 
WI, USA) according to the manufacturer’s instruc-
tions. Normalization was performed with Renilla 
luciferase activity as the basis.

Statistical analysis 

The experimental results are expressed as mean 
± SEM. One-way analysis of variance (ANOVA) was 
used for multiple comparisons (Sigma Stat v3.5 
software). If there was significant variation be-
tween treated groups, the Student-Newman-Keuls 
test was applied. A p-value < 0.05 was considered 
to be statistically significant.

Results

Hinokitiol inhibits PDGF-BB and serum 
induced proliferation of VSMCs

PDGF-BB (10 ng/ml) or serum (10% FBS) in-
duced VSMC proliferation in a  concentration-de-
pendent manner (Figures 1 B, C). In addition, it was 
found that VSMC pretreated with hinokitiol inhib-
its cell proliferation after both PDGF-BB and serum 
stimulation in a concentration-dependent manner. 
These results suggest that the inhibitory effects of 
hinokitiol on VSMC proliferation are not specific to 
PDGF-BB. As anti-proliferative activity is regularly 
conveyed by cytotoxicity, this study also measured 
the cytotoxic effects of hinokitiol on VSMCs, and 
found no evidence of cytotoxicity up to 50 µM in 
both 24 and 48 h (Figure 1 D) incubation. Thus, 
these results indicated that hinokitiol appeared to 
inhibit VSMC proliferation without cytotoxicity.

Hinokitiol inhibits PDGF-BB and serum 
induced DNA synthesis in VSMCs

The BrdU incorporation assay was used to fur-
ther investigate the effects of hinokitiol on PDGF-BB 
and serum stimulated DNA synthesis. The results 
revealed that hinokitiol significantly inhibited the 
BrdU incorporation induced by PDGF-BB and serum 
stimulation in a dose-dependent manner (Figures 
2 A, B). Moreover, Figure 2 C also shows that the 
treatment of hinokitiol (10 mM) significantly reduc-
es the BrdU positive VSMCs induced by PDGF-BB 
through the immunofluorescence staining assay. 
These results indicate that the inhibitory effect of 
hinokitiol targets DNA synthesis rather than cyto-
toxicity to cause the loss of cellular DNA.

Role of hinokitiol in signaling pathways 
induced by PDGF-BB 

We next examined the signaling pathway(s) 
involved in the inhibitory effect of hinokitiol on 
VSMC proliferation in response to PDGF-BB stimu-
lation. The phosphorylation levels of ERK1/2, Akt, 
PI3K and JAK2 were increased by PDGF-BB treat-
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ment, whereas these modifications were not sig-
nificantly reversed by hinokitiol treatment. The to-
tal protein levels of ERK and Akt and α-tubulin did 
not change during the course of stimulation with 
PDGF-BB in the presence or absence of hinokitiol 
(Figures 3 A–D). These data suggest that ERK1/2, 
Akt, PI3K and JAK2 signaling pathways are not in-
volved in the anti-proliferative effects of hinokitiol 
in VSMCs in response to PDGF-BB.

Hinokitiol induces p21 expression in 
VSMCs 

p21 was found to be up-regulated concen-
tration dependently in VSMCs in response to hi-
nokitiol treatment (Figure 4 A). A  representative 
luciferase assay for p21 is shown in Figure 4 B. 
Hinokitiol at a dose of 5 µM significantly (p < 0.05) 
increased p21 protein expression in VSMCs.

Hinokitiol induces p53 phosphorylation and 
its binding effects in VSMCs 

As p53 is essential for proliferation processes 
in VSMCs, the effect of hinokitiol on p53 phos-

phorylation was assessed. Figure 4 C shows that 
treatment of VSMC with hinokitiol (5 mM) for  
10 and 20 min caused enhanced phosphorylation 
of p53, whereas it is down-regulated at 30 and  
60 min treatment periods. The p53 luciferase 
reporter gene assay demonstrated that p53 pro-
moter activity was induced after treatment with 
hinokitiol (Figure 4 D).

Discussion

Abnormal proliferation of VSMCs in arterial 
walls acts as a  critical contributing factor in the 
pathogenesis of atherosclerosis and restenosis 
after angioplasty, and also in the development of 
hypertension [29]. We demonstrated that hinoki-
tiol potently inhibited PDGF-BB and serum-stimu-
lated proliferation by increasing inhibition of new-
ly synthesized DNA without affecting apoptosis 
in VSMCs. Hinokitiol up-regulated the expression 
level of p21, the upstream regulatory protein in 
VSMCs.

p21Cip1, an important member of the CIP/KIP 
family of CDKIs, has been described to specifically 
normalize the cell cycle transition [30], and it in-
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p53

hibits G1 cyclin/Cdks activity by blocking cell cycle 
progression, such as cyclin E- and cyclin A-CDK2 
complexes [31, 32]. In addition, p21Cip1 participates 
in modulation of cell differentiation and apoptosis 
[6]. In the western blot analysis, we observed that 
the expression of p21 was significantly and dose 
dependently increased by hinokitiol treatment. 
Elevated p21 led to a  marked increase in p21 
promoter gene expression. Consequently, it can 
be proposed that p21 is another potential effec-
tor to control the G1/S transition. Transcriptional 
regulation of p21 is known to occur via both p53 
dependent and independent mechanisms [33].  
In the conventional p53 dependent pathway, 

DNA damage results in p53 activation. p53 then 
interacts with response elements present on the 
promoter region of p21 to increase expression 
of p21. Normally, p21 acts as a major effector of 
p53 to control the G1 cell cycle checkpoint [8]. In 
the present study, the results also showed that 
the upregulation of the p53 protein phosphoryla-
tion by hinokitiol led to increased p53 luciferase 
reporter gene overexpression. These results may 
suggest that hinokitiol potentially blocks VSMC 
proliferation via activation of p53 and p21. 

The current study further investigated the ef-
fects of hinokitiol on the PDGF-signaling pathway 
in PDGF-BB-stimulated VSMCs. PDGF is a potent 
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growth factor produced by VSMCs, endothelial 
cells, and platelets in injured vascular wall [12, 34]. 
After PDGF-BB is bound to its receptor in smooth 
muscle cells, three major signal transduction path-
ways – p-PLCg1, p-AKt, and p-p-ERK1/2 – can be 
activated [35]. In this study, we found that hinoki-
tiol had no effect on the expression of p-ERK1/2, 
p-Akt, and p-JAK2. Therefore, these results sug-
gest that hinokitiol may inhibit the PDGF-BB or 
serum-stimulated proliferation of VSMCs, through 
enhancing the p21 and p53 signaling pathway.

PI3K/Akt is known as one of the principal sig-
naling molecules for cell proliferation and survival 
mediated by extracellular stimuli [36]. Substanc-
es for inhibition of the PI3K/Akt pathway such 
as AS605240, TG100–115, PIK-75 and TGX-221 
have been widely studied in treatment of hyper-
tension and angina, and show an array of biolog-
ical effects in the cardiovascular system [37]. The 
PI3K/Akt inhibitors have also been used widely 
as pharmaceutical tools and associated signaling 
pathways in essential biologic processes [38, 39]. 
The insights into the role of PI3K/Akt in human 
diseases provide a  wide spectrum of therapeu-
tic strategies. It has been reported that PI3K/Akt 
is highly expressed in human as well as murine 
atherosclerotic lesions, and the pharmacological 
PI3K inhibitor AS605240, 5-quinoxilin-6-methy-
lene-1,3-thiazolidine-2,4-dione, significantly re-
duced early atherosclerotic lesions in apolipopro-
tein E (Apo-E)-null mice [40]. A similar effect was 
also observed in an atherosclerotic lesion of LDL 
receptor-deficient mice in response to AS605240, 
suggesting that this protein is a promising target 
for the treatment of atherosclerosis [39]. In ad-
dition, topotecan, a  water soluble camptothecin 
analog, inhibits vascular endothelial growth factor 
(VEGF) and basic fibroblast growth factor (bEGF)- 
induced vascular endothelial cell migration via 
downregulation of the PI3K/Akt signaling pathway 
[41]. In contrast, the results of the current study 
show that hinokitiol treatment did not alter the 
expression of PDGF-BB-induced PI3K. It evidently 

confirms that hinokitiol inhibits PDGF-BB-stimu-
lated VSMC proliferation, through enhancing the 
p21 and p53 signaling pathway (Figure 5).

In conclusion, these results suggest that hi-
nokitiol may inhibit vascular smooth muscle cell 
proliferation via the p21/p53 signaling pathway, 
followed by inhibiting DNA synthesis. Proliferation 
of vascular smooth muscle cells has been identi-
fied to play a critical role in the pathogenesis of 
atherosclerosis. Hinokitiol may be a  promising 
candidate for the treatment of atherosclerosis and 
related cardiovascular diseases. 
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